Analyzing the Application of Artificial Intelligence and Machine Learning Algorithms for Evaluating the Financial Performance of Publicly Listed Investment Companies with an Emphasis on the Case of Ghadir Investment Group

Document Type : Original Article

Authors

1 Ph.D., Department of Chemistry, Molecular Simulation Research Laboratory, University of Science and Technology, Tehran, Iran.

2 M.A,, Department of Financial Management, Faculty of Economics and Management, Urmia University, Urmia, Iran.

Abstract

The objective of the present study was to identify the optimal combination of machine learning algorithms, feature selection methods, and clustering techniques for predicting company performance on the Tehran Stock Exchange. The statistical population includes all companies listed on the Tehran Stock Exchange between the years 1389 and 1402. A systematic elimination method was employed to select the sample, resulting in a final dataset of 171 companies. The collected data were analyzed using RapidMiner for machine learning processes and EViews for econometric analysis.
The results obtained from conducting comparative analysis revealed that advanced models such as support vector machines, random forests, and neural networks generally outperform traditional methods in financial forecasting tasks. However, the competitive performance of simpler models, such as logistic regression in specific scenarios, highlights the ongoing relevance of model interpretability and suggests caution against unnecessary algorithmic complexity. Our findings indicate that dimensionality reduction techniques—namely principal component analysis (PCA) and self-organizing maps (SOMs)—often result in reduced predictive accuracy in this context, suggesting that their use should be guided by a clear understanding of the data characteristics and the predictive objectives. Moreover, ensemble approaches, particularly bagging, significantly enhanced model robustness, demonstrating the value of combining multiple learners to navigate the inherent volatility of financial markets. Notably, our top-performing models generalized well when applied to the portfolio of Ghadir Investment Holding, underscoring their practical applicability. The findings of the study demonstrate that models trained on broader market data can provide valuable insights for specialized investment portfolios. Therefore, the findings offer meaningful implications for investment firms and financial analysts, highlighting the potential of machine learning for improving decision-making processes.

Keywords


اصغری، ایرج؛ شکرخواه، جواد،؛مرفوع، محمد و سلیمی، محمد جواد. (1401). داده‌کاهی متغیرهای نمایندۀ نقدشوندگی با استفاده از روش تحلیل مؤلفه‌های اصلی در بازار اوراق بهادار تهران،مدیریت دارایی و تامین مالی  مدیریت دارایی و تامین مالی، 10(4)، 47-66.
جعفری، علی؛ منصوری‏خواه، مصطفی و پورآقاجان، عباسعلی. (1402). پیش‌بینی بازده سهام با تأکید بر نقش معیارهای مالی و نظارتی با استفاده از روش‌های یادگیری ماشین،مطالعات حسابداری و حسابرسی، 12(45)، 125-146.
عباسیان، عزت‌اله؛ شهرکی، کاوه؛ فلاح پور، سعید و نمکی، علی. (1402). رویکردی نوین در پیش‌بینی درماندگی مالی با به‌کارگیری اطلاعات مبتنی‌بر شبکۀ مالی و روش ترکیبی درخت تصمیم تقویت گرادیان،مدیریت دارایی و تامین مالی، 11(3)، 113- 140   
میرزایی، سجاد؛ آشتاب، علی و زواری رضائی، اکبر. (1402). مقایسۀ کارایی مدل‌‌های آماری و یادگیری ‌ماشین و انتخاب مدل بهینه در پیش‌‌بینی سود خالص و جریان‌های نقدی عملیاتی،مدیریت دارایی و تأمین مالی، 11(2)، 53-74.
میرزایی، سجاد؛ محمدی، مهدی و منصور فر، غلامرضا. (1402). مقایسه‌ دقت مدل‌های آماری و یادگیری ماشین برای پیش‌بینی نگهداشت وجه نقد و ارائه مدل بهینه، راهبرد مدیریت مالی، 11(3)، 1-28.
هارونکلایی، کاظم و برزگر، قدرت الله. (1402). تبیین متغیرهای مالی مؤثر در پیش‌بینی احیای مالی با استفاده از رویکرد هوش مصنوعی. مدلسازی اقتصادی، 17(61)، 89-104.
Albuquerque, R., Koskinen, Y., & Zhang, C. (2019). Corporate social responsibility and firm risk: Theory and empirical evidence. Management Science, 65(10), 4451–4469.
Anand, V., Brunner, R., Ikegwu, K., & Sougiannis, T. (2019). Predicting profitability using machine learning. SSRN.
Attewell, P., & Monaghan, D. (2015). Data mining for the social sciences: An introduction. University of California Press.
Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165–1195.
Ben Jabeur, S., Stef, N., & Carmona, P. (2023). Bankruptcy prediction using the XGBoost algorithm and variable importance feature engineering. Computational Economics, 61(2), 715–741.
Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and Information Systems, 34, 483–519.
Chen, Y., & Hao, Y. (2017). A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Systems with Applications, 80, 340–355.
Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297.
Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970–3983.
Farooq, U., & Qamar, M. A. J. (2019). Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria. Journal of Forecasting, 38(7), 632–648.
Freeman, R. N., Ohlson, J. A., & Penman, S. H. (1982). Book rate-of-return and prediction of earnings changes: An empirical investigation. Journal of Accounting Research, 20(2), 639–653.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.
Issah, M., & Antwi, S. (2017). Role of macroeconomic variables on firms’ performance: Evidence from the UK. Cogent Economics & Finance, 5(1), 1405581.
Jan, C. L. (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan. Sustainability, 10(2), 513.
Jones, S., Johnstone, D., & Wilson, R. (2015). An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. Journal of Banking & Finance, 56, 72–85.
Katuwal, R., Suganthan, P. N., & Zhang, L. (2020). Heterogeneous oblique random forest. Pattern Recognition, 99, 107078.
Li, Y., Li, T., & Liu, H. (2017). Recent advances in feature selection and its applications. Knowledge and Information Systems, 53, 551–577.
Liang, D., Lu, C. C., Tsai, C. F., & Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561–572.
Liang, D., Tsai, C. F., & Wu, H. T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289–297.
Liang, L., Liu, B., Su, Z., & Cai, X. (2024). Forecasting corporate financial performance with deep learning and interpretable ALE method: Evidence from China. Journal of Forecasting.
Lu, X., Chen, X. Y., Zhang, L. S., & Liu, H. X. (2001). Prediction ability of basic financial information of Chinese listed companies on future earnings. Economic Science, 6, 53–62.
Oeyono, J., Samy, M., & Bampton, R. (2011). An examination of corporate social responsibility and financial performance: A study of the top 50 Indonesian listed corporations. Journal of Global Responsibility, 2(1), 100–112.
Olayinka, A. A. (2022). Financial statement analysis as a tool for investment decisions and assessment of companies’ performance. International Journal of Financial, Accounting, and Management, 4(1), 49–66.
Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics, 11(4), 295–329.
Oz, I. O., Yelkenci, T., & Meral, G. (2021). The role of earnings components and machine learning on the revelation of deteriorating firm performance. International Review of Financial Analysis, 77, 101797.
Papíková, L., & Papík, M. (2022). Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises. Intelligent Systems in Accounting, Finance and Management, 29(4), 254–281.
Sermpinis, G., Stasinakis, C., & Hassanniakalager, A. (2017). Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds. European Journal of Operational Research, 263(2), 540–558.
Shanmuganathan, M. (2018). Visualized financial performance analysis: Self-organizing maps (MS). Research Journal of Finance and Accounting, 9(12), 27–34.
Shen, W., Guo, X., Wu, C., & Wu, D. (2011). Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 24(3), 378–385.
Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75–85.
Son, P. V. H., & Duong, L. T. (2024). Research on applying machine learning models to predict and assess return on assets (ROA). Asian Journal of Civil Engineering, 25, 1–11.
Soumm, M. (2024). Causal inference tools for a better evaluation of machine learning. arXiv.
Sun, J., Li, H., Fujita, H., Fu, B., & Ai, W. (2020). Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting. Information Fusion, 54, 128–144.
Tang, X., Li, S., Tan, M., & Shi, W. (2020). Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39(5), 769–787.
Tsai, C. F., Sue, K. L., Hu, Y. H., & Chiu, A. (2021). Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction. Journal of Business Research, 130, 200–209.
Tumpach, M., Surovičová, A., Juhászová, Z., Marci, A., & Kubaščíková, Z. (2020). Prediction of the bankruptcy of Slovak companies using neural networks with SMOTE. Ekonomický časopis, 68(10), 1021–1039.
Tutcu, B., Kayakuş, M., Terzioğlu, M., Ünal Uyar, G. F., Talaş, H., & Yetiz, F. (2024). Predicting financial performance in the IT industry with machine learning: ROA and ROE analysis. Applied Sciences, 14(17), 7459.
Wang, Z., & Sarkis, J. (2017). Corporate social responsibility governance, outcomes, and financial performance. Journal of Cleaner Production, 162, 1607–1616.
Wong, Z., Chen, A., Taghizadeh-Hesary, F., Li, R., & Kong, Q. (2022). Financing constraints and firm’s productivity under the COVID-19 epidemic shock: Evidence of A-shared Chinese companies. The European Journal of Development Research, 35(1), 167–193.
Zhou, F., Zhang, Q., Sornette, D., & Jiang, L. (2019). Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84, 105747.