اصغری، ایرج؛ شکرخواه، جواد،؛مرفوع، محمد و سلیمی، محمد جواد. (1401). دادهکاهی متغیرهای نمایندۀ نقدشوندگی با استفاده از روش تحلیل مؤلفههای اصلی در بازار اوراق بهادار تهران،مدیریت دارایی و تامین مالی مدیریت دارایی و تامین مالی، 10(4)، 47-66.
جعفری، علی؛ منصوریخواه، مصطفی و پورآقاجان، عباسعلی. (1402). پیشبینی بازده سهام با تأکید بر نقش معیارهای مالی و نظارتی با استفاده از روشهای یادگیری ماشین،مطالعات حسابداری و حسابرسی، 12(45)، 125-146.
عباسیان، عزتاله؛ شهرکی، کاوه؛ فلاح پور، سعید و نمکی، علی. (1402). رویکردی نوین در پیشبینی درماندگی مالی با بهکارگیری اطلاعات مبتنیبر شبکۀ مالی و روش ترکیبی درخت تصمیم تقویت گرادیان،مدیریت دارایی و تامین مالی، 11(3)، 113- 140
میرزایی، سجاد؛ آشتاب، علی و زواری رضائی، اکبر. (1402). مقایسۀ کارایی مدلهای آماری و یادگیری ماشین و انتخاب مدل بهینه در پیشبینی سود خالص و جریانهای نقدی عملیاتی،مدیریت دارایی و تأمین مالی، 11(2)، 53-74.
میرزایی، سجاد؛ محمدی، مهدی و منصور فر، غلامرضا. (1402). مقایسه دقت مدلهای آماری و یادگیری ماشین برای پیشبینی نگهداشت وجه نقد و ارائه مدل بهینه، راهبرد مدیریت مالی، 11(3)، 1-28.
هارونکلایی، کاظم و برزگر، قدرت الله. (1402). تبیین متغیرهای مالی مؤثر در پیشبینی احیای مالی با استفاده از رویکرد هوش مصنوعی. مدلسازی اقتصادی، 17(61)، 89-104.
Albuquerque, R., Koskinen, Y., & Zhang, C. (2019). Corporate social responsibility and firm risk: Theory and empirical evidence. Management Science, 65(10), 4451–4469.
Anand, V., Brunner, R., Ikegwu, K., & Sougiannis, T. (2019). Predicting profitability using machine learning. SSRN.
Attewell, P., & Monaghan, D. (2015). Data mining for the social sciences: An introduction. University of California Press.
Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Computing and Applications, 19(8), 1165–1195.
Ben Jabeur, S., Stef, N., & Carmona, P. (2023). Bankruptcy prediction using the XGBoost algorithm and variable importance feature engineering. Computational Economics, 61(2), 715–741.
Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and Information Systems, 34, 483–519.
Chen, Y., & Hao, Y. (2017). A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Systems with Applications, 80, 340–355.
Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297.
Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970–3983.
Farooq, U., & Qamar, M. A. J. (2019). Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria. Journal of Forecasting, 38(7), 632–648.
Freeman, R. N., Ohlson, J. A., & Penman, S. H. (1982). Book rate-of-return and prediction of earnings changes: An empirical investigation. Journal of Accounting Research, 20(2), 639–653.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.
Issah, M., & Antwi, S. (2017). Role of macroeconomic variables on firms’ performance: Evidence from the UK. Cogent Economics & Finance, 5(1), 1405581.
Jan, C. L. (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan. Sustainability, 10(2), 513.
Jones, S., Johnstone, D., & Wilson, R. (2015). An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. Journal of Banking & Finance, 56, 72–85.
Katuwal, R., Suganthan, P. N., & Zhang, L. (2020). Heterogeneous oblique random forest. Pattern Recognition, 99, 107078.
Li, Y., Li, T., & Liu, H. (2017). Recent advances in feature selection and its applications. Knowledge and Information Systems, 53, 551–577.
Liang, D., Lu, C. C., Tsai, C. F., & Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561–572.
Liang, D., Tsai, C. F., & Wu, H. T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289–297.
Liang, L., Liu, B., Su, Z., & Cai, X. (2024). Forecasting corporate financial performance with deep learning and interpretable ALE method: Evidence from China. Journal of Forecasting.
Lu, X., Chen, X. Y., Zhang, L. S., & Liu, H. X. (2001). Prediction ability of basic financial information of Chinese listed companies on future earnings. Economic Science, 6, 53–62.
Oeyono, J., Samy, M., & Bampton, R. (2011). An examination of corporate social responsibility and financial performance: A study of the top 50 Indonesian listed corporations. Journal of Global Responsibility, 2(1), 100–112.
Olayinka, A. A. (2022). Financial statement analysis as a tool for investment decisions and assessment of companies’ performance. International Journal of Financial, Accounting, and Management, 4(1), 49–66.
Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics, 11(4), 295–329.
Oz, I. O., Yelkenci, T., & Meral, G. (2021). The role of earnings components and machine learning on the revelation of deteriorating firm performance. International Review of Financial Analysis, 77, 101797.
Papíková, L., & Papík, M. (2022). Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises. Intelligent Systems in Accounting, Finance and Management, 29(4), 254–281.
Sermpinis, G., Stasinakis, C., & Hassanniakalager, A. (2017). Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds. European Journal of Operational Research, 263(2), 540–558.
Shanmuganathan, M. (2018). Visualized financial performance analysis: Self-organizing maps (MS). Research Journal of Finance and Accounting, 9(12), 27–34.
Shen, W., Guo, X., Wu, C., & Wu, D. (2011). Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 24(3), 378–385.
Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75–85.
Son, P. V. H., & Duong, L. T. (2024). Research on applying machine learning models to predict and assess return on assets (ROA). Asian Journal of Civil Engineering, 25, 1–11.
Soumm, M. (2024). Causal inference tools for a better evaluation of machine learning. arXiv.
Sun, J., Li, H., Fujita, H., Fu, B., & Ai, W. (2020). Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting. Information Fusion, 54, 128–144.
Tang, X., Li, S., Tan, M., & Shi, W. (2020). Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39(5), 769–787.
Tsai, C. F., Sue, K. L., Hu, Y. H., & Chiu, A. (2021). Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction. Journal of Business Research, 130, 200–209.
Tumpach, M., Surovičová, A., Juhászová, Z., Marci, A., & Kubaščíková, Z. (2020). Prediction of the bankruptcy of Slovak companies using neural networks with SMOTE. Ekonomický časopis, 68(10), 1021–1039.
Tutcu, B., Kayakuş, M., Terzioğlu, M., Ünal Uyar, G. F., Talaş, H., & Yetiz, F. (2024). Predicting financial performance in the IT industry with machine learning: ROA and ROE analysis. Applied Sciences, 14(17), 7459.
Wang, Z., & Sarkis, J. (2017). Corporate social responsibility governance, outcomes, and financial performance. Journal of Cleaner Production, 162, 1607–1616.
Wong, Z., Chen, A., Taghizadeh-Hesary, F., Li, R., & Kong, Q. (2022). Financing constraints and firm’s productivity under the COVID-19 epidemic shock: Evidence of A-shared Chinese companies. The European Journal of Development Research, 35(1), 167–193.
Zhou, F., Zhang, Q., Sornette, D., & Jiang, L. (2019). Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84, 105747.