A Study of the Spillover Effects of Crises in the Banking System using DCC and BEKK Approaches

Document Type : Original Article

Authors

1 Ph.D. Candidate, Department of Financial Engineering, Faculty of Humanities, Qom Branch, Islamic Azad University, Qom, Iran.

2 Associate Professor, Department of Business Management, Faculty of Management, Tehran Central Branch, Islamic Azad University, Tehran, Iran.

3 Assistant Professor, Department of Accounting, Faculty of Humanities, Qom Branch, Islamic Azad University, Qom, Iran.

Abstract

The issue of Systemic risk, as a macro-level phenomenon that can affect the stability of financial systems has received much attention in recent years. This evident in the fact that the concept of systemic risk has emerged as a synonym for financial vulnerability or fragility. Such risks typically arise from instability in financial institutions and can be transmitted to the entire financial system. The objective of the current study is to identify the factors that cause systemic risk in banking systems. The statistical population of this study is all banks listed on the Tehran Stock Exchange between the years 1390 to the end of 1397. In total, 13 banks active during this period were included in the present study. To determine whether there is a relationship between systemic risk in the Iranian banking sector with the currency market, the global gold market, the global oil market and the stock market, the paper starts with identifying and extracting time series data concerning the factors that cause shocks to the stock value of banks and modeling them through a Vector Auto Regressive model. Subsequently, based on the residuals of the VAR model, a multivariate MGARCH model was calculated. Finally, the domino effect of systemic risk among banks was tested using the significance coefficients of the Vector Auto Regressive model.
Based on the results, the coefficient of the global oil market and gold market return variable is significant, so that shocks to the global oil market and gold market affect the return of these variables by 4 and 13 percent, respectively. Also, the most uncertain conditions in the years under study are related to the stock market, gold market, foreign exchange markets, and global oil market, respectively. So that a shock to the global oil market and stock market increases the systemic risk of banks by 25 and 16 percent.

Keywords


ابونوری، اسماعیل و ضیاءالدین، حامد (1399)، بازدهی و تلاطم بین قیمت جهانی نفت و شاخص بازار سهام در کشورهای عضو اوپک، مدلسازی اقتصادی، 14(49)، 1-24.
حسینی، سید علی و رضوی، سید سمیه (1393)، نقش سرمایه در ریسک سیستمیک موسسات مالی، پژوهش های تجربی حسابداری، 4(13)، 127-147.
سید حسینی، سید محمد و ابراهیمی، سید بابک (1392). بررسی سرایت تلاطم بین بازارهای سهام، مطالعه موردی بازار سهام ایران، ترکیه و امارات. فصلنامه دانش مالی تحلیل اوراق بهادار، 6(19)، 81-97.
عیوضلو، رضا و رامشگ، مهدی (1398)، اندازه گیری ریسک سیستمیک با استفاده از کسری نهایی مورد انتظار و ارزش در معرض خطر شرطی و رتبه بندی بانکها، مدیریت دارایی و تأمین مالی، 7(4)، 1-16.
فرزین وش، اسدالله؛ الهی، ناصر؛ گیلانی پور، جواد و مهدوی، غدیر (1396)، ارزیابی ریسک سیستمیک در شبکه بانکی ایران توسط معیار تغییرات ارزش در معرض خطر شرطی، مهندسی مالی و مدیریت اوراق بهادار، 8(33)، 265-281.
قاسمی، عبدالرسول؛ محمدی، تیمور؛ توکلیان، حسین و صادقین، علی (1399)، همبستگی پویا بین بازار نفت، بازارهای مالی، صنایع نفتی و پتروشیمی در ایران. فصلنامه مطالعات اقتصاد و انرژی، 16(65)، 1-34.
محمدزاده، اعظم؛ شمیکی تاش، محمد نبی و زینتی، کیانا (1399)، بررسی همبستگی زمانی- تناوبی بین قیمت نفت، طلاو سهام بازار بورس تهران، بااستفاده از تحلیل چندگانه موجک (MWC)، اقتصاد مقداری، 18(69)، 70-57.
 
Abdulkarim, F. M., Akinlaso, M. I., Hamid, B. A., & Ali, H. S. (2020). The nexus between oil price and islamic stock markets in Africa: A wavelet and Multivariate-GARCH approach. Borsa Istanbul Review20(2), 108-120.
Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of financial Economics77(2), 375-410.
Adrian, T., & Brunnermeier, M. K. (2011). Co-VaR (Working Paper). Federal Reserved Bank of New York.
Aragó-Manzana, V., & Fernández-Izquierdo, M. Á. (2007). Influence of structural changes in transmission of information between stock markets: A European empirical study. Journal of multinational financial management17(2), 112-124.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics31(3), 307-327.
Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: a review of the theory and empirical evidence. Journal of econometrics, 52(1), 5-59.
Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of financial economics104(3), 535-559.
Han, L., & Yong, W. U. (2017). Systemic Risk Spillover Effect between Banking and Insurance Industry Based on the CoVaR Method. In International Conference on Economics and Management Engineering.
Huang, S., An, H., Gao, X., & Sun, X. (2017). Do oil price asymmetric effects on the stock market persist in multiple time horizons?. Applied energy185, 1799-1808.
Iori, G., Jafarey, S., & Padilla, F. G. (2006). Systemic risk on the interbank market. Journal of Economic Behavior & Organization61(4), 525-542.
Mo, B., Nie, H., & Jiang, Y. (2018). Dynamic linkages among the gold market, US dollar and crude oil market. Physica A: Statistical Mechanics and its Applications491, 984-994.
Olateju, A. O., Galadima, M. D., Aminu, A. W., & Hussain, U. A. (2020). An empirical analysis of oil price volatility to exchange rates in Nigeria: a multivariate GARCH approach. LASU J Econ2(1), 114-127.
Yin, L., Feng, J., & Han, L. (2021). Systemic risk in international stock markets: Role of the oil market. International Review of Economics & Finance71, 592-619.
Zubair, S., Kabir, R., & Huang, X. (2020). Does the financial crisis change the effect of financing on investment? Evidence from private SMEs. Journal of Business Research110, 456-463.